T

.....

-~<—*‘~-~‘e~:w\‘v P8 v S aS

R PN AR L

A ARE

LTRSS L T e,



Y

ek DA

RS LU A = L€ L PP 2 0avA MEN

e T o T UL M s S
-

i e e\ﬁw_ﬂw. e

otlg el T - R e L
R +mm—xa‘t@==qgm%’w==mm_——w

OF SOLUTION OF PARTIAL DIFFERENTIAL BQUATIONS BY THE

EAHN-BANACH THEOREM

BY . o
P. B, GARABEDIAN AND MAX SHIFFMAN |

TROHKIOAL REPORT HO. 9
JARUARY 21, 1953

PREPARED UNDER CORTRACT Honr—225(11)
(NR-041-086)

: FOR
OFFICE OF RAVAL RESEARCE

APPLIED MATHEMATIOS AKD STATISTIOS LABORATORY
STANFORD UNIVERSITY
STANFORD, CALIFORNIA

7

= o e e ey Fa——

T T TN e | e 7y

-u‘n-w-:wtmbrt.; ‘,

Sy e

MITII Pyt Tt iied

S

Fr o, Jde . 1ol

P




<

e T

e

adiig 1

] A e oioac AT e a2 - T O A oo I

el k[t b dt el e L (i iad

i - Lo . e : P : ' ! b ' ’ - Al
i N . i . - A et .

N . . . - - Ve . S
. e . : S : B . -, - ' B L

L

on SOLUTION OF PARTIAL nm-smnm mmm BY THE
P - HAFR-BANAGH THEGRRY

AR

by |
P. R. Gurabedisn and Nax Shiffuan
1. Istrodustion. | |
-In this paper ve show how to onstruct the Graon's andl Noumann's
mnot:lons of & 11naax- elliptie vurtial du't'erential squation by a uthod
based on linsar mnot.ionala. The oommction depands essentially on the
Hahn-Bunach extension thaorem [lJ, which hss been used recently in a siuilar

* connsotion by lax [5]. Lax's approach di::ara from ours in that, while his

proof centers about a bounded linmear funotional based on inhomogeneous
bcu_ndaéy cond‘itians, our proof cantars rather about a funoctional based on
the solution of an 1nhomogeneou;a differentisl squation. 'I‘hie latter point

~ of view has the advantage that in construsting the Oreen's and Heumann's

funotions we need only a fundamental asolution of the di?farential equation

in the small, and, indeed, we can auccsed with merely a parametrix, which is
readily obtained for a linea\r oelliptic partial differential equation, whersaas
all earlier existence proofs of the type studied here [3, 4, 5) are baséd on

the previous knoviedge of a fundamental solution in the large. OQur considera-

tions are also advantageous for domains with general boundaries and for

Riomannian manifolds.

For earlier work on application of the,‘thn-Banaoh theorem to boundary

value problems, we refer to the papers of Casoioppoli (2] and of Miranda [61.

It should be mentiomed at the outset that the proof of the Fahn-Banach theorem
in the form in which we shall nead it in this paper does not require trans-
finite induction, sinoe the Banach apace of continuous functions which we use

is separablae.
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Let P=P(s)> & >0 be a poaitive, continuously differentisble function [

‘of the point s in 8 plane domain D bounded by a finite num'ber or siaple

oloud amalytic curves O Denote by 8 the Banneh space ot 111 funcbions £

whieh are oontinuona in D+0, with the nom - -

' Hf”.-! ,fl ’

B R il et

and denots by B’ the subspace of B of funotiocns

T AL

e L i

where u is any fuiotion, céntinuéua fvi‘bh its first and second derivaiives in

mq,,,ghc:s-r;r&‘xaf 1 dgnvitnﬂgiv!njihfaion L7 T
PR | an - !
" For any point w_in D, we define a linear fundtiopal L {r_} on B’ by the }
o ronula ’ ;
7 . - 7
(3) ulw) = L {Du-Pu} : o |
‘That this linear funotional is uniquely defined and bounded can be shown by ? |
. the"folloung argument. !
 First, if | g
1
(4) Av-PUg0 .
in D and ‘ i
' 20,
(5) N B 0. i
on G, then U> 0 in D, For if U<0 in some subregion of D, wa could apply
: 1
Green s theorem to that subreglon %o obtain i D
(6} ff (V0)2+ PrRlan = -H Ul AU- POYA -S v -g,—f— ds i
.

where dT is the area slement and where s denotes the aro length along the |
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boundary ‘ourves of the rogion U< 0. By (4), (5) and the conditien U< 0, M

is olear that che right-hand side of (&) is nen-positive, whereas it is annlly
“olear thnt the left-hand. 24ds of (6)' is positive. This contradiction ylelds
the °1'181M1 statement U 0. Uniqueness of the functional L tor g}ivvein

Qu-!‘u, a8 defined in (3 1: an immediate eonuquonoe of this.
Sccond, let v, /8, , 80 that v

h e

and let W= lifil, Them inD -

A( -u) P(Hv-u) -‘-f"“f“’f‘o s,

whenos Mv, - a P0. It follows from the definition (3) that for 2 in %3/,

(8) . L{Qslwm ,

which proves that L ie a bounded funotional.

le conolude from the Hahn-Banach theorem that the boundad linear funotional
L, can be extendad frow the veotor space B’ ‘to operata on all elements of the

Banaoh space B and to satiafy (8) there. By applying the extended runetional
in a suitable way, we shall set up an axpz-ession which we shall prove to he the

Feumaan's function of the limear elliptic partisl differential equation

(9) B Aw-Pr=o
in D, B 7

For the construction, we need a so-called parametrix S(w,s) for (9), Such
a paramatrix is a funotion of w whioch has a logarithmic éingularity at we 3
and is suoh that AS~PS 18 conbinuous, even at the point z. More precisely,
we shsll require certain regulariiy propertiss of A S- PS as a funotion of 2,
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and for our prasent purposes we selsot S(w,z) to be a symmetric funotion of -
w ard z. Let '

(lo) o g(',ﬂ) = log l"'. + ;cl

be a fundamental solution of Laplace's equation‘in a region B. When E is a
semi-circle, it is an elesentary problem to construct g explicitly in such a
way that g vanishes on the oiroular arc bounding E and has zero normal deriva-

tives on the driamqter bownding E, We set

L) - 51%&; LOHUBHODIL
| - 12,(1,‘5) = El'ﬁ" Sgp(tﬁg(w,t)rl(z,t)dc -,
and we 3% ST E L
(11) = So(w,g) - g(w,2) - Il(w,z)+ Ié(w,z) ,

whence by Poisson's equation

Os - =-PI, |
which shows, fcr our purposes, that 8, is a perametrix for (9}, If E is the
gbove semi-circle and g is explioltly constructed in the manner desoribed for
& semi-olrele, then So will have a normal derivative whic? vanishes on the

diameter boghding E. For z inithg neighborhoo& of a point z, in which we are
interested, we obtain for all w a aﬁitabie parametrix S whose normal derivaﬁive
vanishes on C by multiplying So by a funotion &, with continuous derivativés

“of the first few orders, whioch is identically 1 near 3y but whioch vanishes
identically outside a small oirals sbout s_. |

Having obtained a parametrix S(w,z) in this marner, we define the

Neumann's function N(w,z) for (9) in D by the formuls

(12) Nw,2) = S(w,2)- 1, {14 - 2(6)B(5,2)} ,

A e [, . . [ SRR RN P - IR v ST - I . . : 8
N § *k‘:*'(i‘aé'e*" NS e WA 2 B R e . LT - . .
R TR T S X ST S A TN N e Lo et L L s e w e D it e Rt VLT VAL PR N -
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=5
and we proceed to‘shuifthat N has, aswi funotion >f ﬁhé'point 2, the character=-
istio propofiiea of the Neumann's fumotion. It is eablly §§:1£ied from the
definition (3) that N is independeut of the choice of $he ,aseatrix 3, siace
the normaliderivative of S vanishes on C and3tha_difruronce“bfwtwo such -

paramatrioes is regulqr;

First, since L is a bounded funotional, th» QuatibiuyeL'E{[.\ -a(g)*{sf{w{,‘s‘)’]} :
depends continuously on =, aad, indeed, we can dirfSveit’ute ﬁith respaut Eb LR
under the‘funotional Ly+ We'obtain _ | o ‘:; | -
(13) [A«P(z)N(w,2) = [A-P(a)Bn,s)- L'{:FZB- P(ﬁ)}iélw’?(z)lS(t,s¢j' "0,

Ths expreséion on the right vanishes, acccrding to (3),-because,033‘a fureotion

of W, theiéxpression (- P(2)5(w,2) has continuous seaind detivatives n D+C

and has & normal derivative which vanishes on C. Thus N satisfies the pavtial

differential equation (9) as a function of z.
Second, N¥(w,2) has a logarithmic singularity at the toint. z=w, since

the second term oh the right in (12) is bounded.

Third, we can caloulate the normal derivative of N at‘a’point zé of G
convéniently by making a specisl choice of E and g in (11), The curve¢ G have
an analytic representation zw=s(s) in terms of a parameter s, and we 2100se E
to lie in D and to correspend in the s-planme to a small ser:-nirsle vhose |
bounding diameter lies on the real axis and whose center majs imto 2. e
ohoose g to be the fundamental solution of the Laplace ejuaiion in the semi~
circle which vanishes on the circular boundary and has normal derivative zero
on the rectilinear boandary. Since zwz(s) 43 a conformal mipping, g satisfies
Laplace's agquation in E also, snd substitutioninto (1) yields a parametrix S,
with vanishing normal derivativas with reapsoct to both 3 and v on en arc of G
ineluding the point 2y Multiplication by a function & which ;s identiocally 1

.
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" et the Nqamann’s functicn exists and is equal to N,

 gereral ellipiioc mquations in several varisbles we can treat the easy case of

\
R

in 3 small neighborhood or L) 1dentioaily £810 outaido a alightly lurgsr
naighborhood of L) and has a.vanishing norunl dorivativ! on G, yieldl our -
_ eholce or 8. (A sslection of & as a funotion of |8l '111 utist:r these

mn this ch(r ® o2 § in (12), it is peraissible to compute the normal
deriv;*i"e oL N rita rospeot ta 2 at 5, by di:forentiating urder the boundod
funntional L le rind

: “et.. Jihio ) ; { ) : e

W») "5‘:5?‘ - '3?7'--1*'{"3" 28 72 LU
si.nce -5-5- g 23 =0 throughont D,

lo have taus shown that N has the thrae eharaaterisnicrproperties o” the

50&ﬂann s fﬂno1inn of (?) in D, as a funotion of 2, and e conclude therefore

We remsisy fhet it is possible to generalise the above existence proof to

Tiruial diffeéeatial equations other than (9). Also, th. ractriotion -
!Jdepandent variablés 4s unne; -:aFy, . v indeed, for more indepenAcor’
variables the )nly additional complication comes in deriving the boundary

eo.vdition (1,), which has been based here on conformal mapping. However, for

‘a plane boundéiyrwithout any loass of generality, since we can always f£ind a
. traisformiticn of coordinates which takes a small portion of an analytlc

suriace into'g portion oriaiplane and this transformation will merely carry
one_all;ptic equation‘intO'inother whioh can be discussed equally well, In
anofher diriction, we can generalize the“exiaténae rroof by replacing thé
bomdary ecadition (2) by

(15) Lufuwo
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where A is a g£V|n positiv@ function on O. In this oaso, ve obtain the
existsnae of a Green's function of the third kind. Also, we note that the Lo
douain D may be a uultiaheeted R;onlnn snrraao over the plane, instend of n

schlicht végion.

. :
 m this section s study the Dirichlet p::oblen for a linear elliptic
partial differential oquatiéh in several indepandent variables by a technique (
nnniogous to that oft?gg@}pn 2. Our objective is 0 give a more penetruting ' %
;Vapalydié of the boundary ;Andition, with hypotheses on the boundary far less ”
restrictive than analyticity. This can be achieved by appropriate uge-)f
the prinaiple of majorization and by a stronger use of the Hahn-Eanach ' thecrem.
We present the material for three independent variables in space for the sake |
of simpliacity, and we merely remark that for any finite number of dimensions
the s%eps to be carried out are siril-r,
' pu-;{p be 5 bounded domain in sprae with boundary C having the followir;
propertys . quh péint of C uqh'-_ 'fqﬁhn: ks« a0lid sphére R which is other-
wige diejoinf from D+C, Let, P(z) 220 be a non-négative continuously
dirferentiablbl/ funotion of the point z in a neighborhood of D+C, and let B’

denote the'iinear space of all funotions

' £ = Qu-Fu
in D+C with u twice continuously differentiable in D+C and sero on (. We let B
denote the Banach space of all continuousrgunctioﬁs in D¥0 with the norm

HfHﬁmaxlfl .

Vn

he considerations apply if, in place of continuous derivatives, P(z)
satisfies a Lipsohit: aonditicn |P(z)- P(z’)l K|g-z’l.



!‘or any polat v 1:: D we define 2 linear runotioml L, over 8’ 'by the formula

(169 L (Au-Pa) = afe) .

That this fwnctional is untquely defined follows from the thdoren that s
:oiution of A‘ﬁ-Pu- Ovin D whﬁ.oh varishes on O must be identi‘ully 0, since

it omnot have a positive maximum or nogntivo ninimum in tho uurior o? D,
We prove ‘bha‘cr, for £ in B/,

an L‘{g}eb?f) L
- whers " | |
(18) b(r) = dnf v(w) | - ,

T

anong all twice continuously differentiable functions v with

(19) Av-Prt
in D, and v 200n 0, -l"or the proof, we note that since
Alv-u)-P(v-n)tt-2=0 )

v=u oannot have a negative minimum inside D, Therefors, since v-u 20 on 0,
we muat have v-u2>0 .4n D also, which yields the desired estimate (17). In
faot, since u is itself an admissible funotion in the detormimation of blf],
¥o bave equality in (17) for £ in B/, In partisular, b[0]=0,
The functional blf] defined in (18), (19) has a meaning for any f in the
entire space B. For, let v, be the funotdon
2 2)

2-K.. (x+y+z ’ )

whers K is a large oconstant such that \) =20 in I+0, Ws havs
sz- Pvzé -1 ’

and Hr!lv2 is an admissible funotion for (18). Thus

.. e b oean . P B R o R o ST - AT T IR
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(20) ser v () ffel] & £elle .
Alﬂo, we notice that

(21) | Lig1ea 0
!

i# £ 20 throughout D, sincs the funotion v==0 is than admissible in (18).
The functional b{f7] is nositively horogensous and subadditive; i.e.,
bltr) = tblf) if ¢ >0, b[f]_*rz]lsh[fl]*b[rz] .

The latter inequality follows from the faot that if v/ and v/ are admissible
f\mctions for the determination of b[f 1 and b[t 1, respectively, then v/ +v”
is admissible for b[fl‘f £,1. We rsmark that since we already know that bf0l=0,
the subadditivity shows that bl£1Z2 -b-£12-K[|£||, whence b(£] i finite
and likewise bounded from below. A

We now use the Hahn-Banach theorem 'bo extend L'[f] as a linear funotional
over the antire space B still satisfying the inequality (17). Applying the

extended {...tlonal to a parametrix for the equation
Lu-Pyu=0
in s suitable way, we shall obtain the Green's function in D for this equation.
Let E be a (small) ragion containing z, and let g(w,z) = —Lz-l. ... bea

fundamental sclution for Laplace's equation which is non-negative in E and
aymmetric in w and z (Jw-z| means the distance between w,z). For example,

g(w,z) could be the Green's function for Laplace's equaticn for a sphere

enclosing E, Set

(22) IJ w,z) = zm' ﬁ . (2,£)dT ’

i%1,2,..., Where Io(w,z)-g(w,z) and dT is the volume element. We have

Ij(w,z) >0 4in E. Then

,,_
-

b
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(23) Sy(m) = P_:; (1% 1,n,0)

is a pnrai:et.ri.x for the equation Au= Pu = 0, and

(24) Aso‘- PS, = PI, >0 .

Eo: g in the nuighﬁorhood of a point B, in whick we are interested, we
obtain for all w in D a sultable parametrix S, (w,8) by miltiplytng S_ by a
funation &, with ooptinuoua derivatives of the first few orders, which is
identically 1 nesr #_, but which vanishes identieally outside a small sphero
about L

We now define the Grean's function G(w,z) in D by the formula
(25) Glw,8) = Sn,2) =L [{A -p(t)}s(8,8))

where S(w,2) is a parametriz in D which vanishes when w is on C. We show
ldireotly that G has as a funation of 2z in D the characteristic properties of
the Green's ...cvion, Note that the formula (25) is independent of "+
partioular S(w,2) used, by virtue of (if

Firat, the sscond term on the right in (25) is bounded for z near w by
virtue of (17) and (20), so that G must ‘1ave a pols at z=w. Second, since
the fu§c£iona1 L' is 8 bounded linear functional, the second ferm on éhe
right in (25) is contimwous in z for z in D, Indeed, we can differentiate

with respect to the coordinstes of 2z under the operator L', and we find

fa-p) Yo {0 - P(2)}8-1 ({8 -p(s){O-P2)}s]1 =0 .

The last equality follews from (16), since {33 -P(z{}S(w,z) 1s a twice
continuously differentiable function of w which vanishes for w on C.

Third, we prove that G 20, Let & be a large rositive number and let
F(3) be & function of S which is identically S for Se& ", which is continuous

[ R S

e e T
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with itr first two derivatives for all S, which has a finite limit as S-—§¥co,
and whioh has a non-positive second derivative F’(S) for ‘S >0 . With the
parametrix S° construoted in (23), we havul/

(28) {o- P} ¥(s,) -{A-P} S, - r"(VS°)2 + (P'=1)(As - )

+(F's -FPem0
by (24) and the inequalities F'S-¥=<0, and ¥/~ 150, which follow from
F<0,

Using the pararmetriz S, construoted in the paragrarh immeadiately following

l
' (24), we therefore have for sufficiently large O~

(A- P)P(Sl)- (4 - P)S, =0 .

It now follows that
FE,) =~ LI(O-PS,)IZL [(A-P)8, ],

ginge the linear funetional L'tf]-'-_f-.o when f is evarywhere non-negative, by
virtue of (21) =r2 (17). Therefore

¢=8,-L[(A-P)8, 128 -T/* V20 ,

which is the desired result.

Finally, we prove that G has boundary values O. Let 3, be a point of C,
let R ba a gnall éphere in the exterior of D and touching C at Zys and let R’
be a small sphere containing 2, and orthogonal to R, Denote the region
outside R and inside R’ by B, and let g(w,z) be the CGreen's function for
Laplace's equation in E. For this choice of E and g, define Ij(w,z) as in
(22) and et

l/For the general differential equation, F,can always be comnstructed so that
the first term sorresponding to F'(V?So)‘ is the dominent term, and we gtil:
have the ineguality.
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Shin,8) = Zé (-1)d Lme) .
: J= :
- Then,

(27). | As - PS, = =PI (w,z)éo .

Alsg, for w on the baunlary of E, wo have g(w,s)=0 and I (w,2) =0 from (22)
Therefors, st (w £)=0 on the boundary of E. Since S cannot have a nogative
rinimun in the interior of E by (27), it follows that
_ S: > Q .
throughout E. )

Wultiply S, by a non-negative funotion 5, continuous wit its first
few derivatives, which is idehtically lin s émall neighborhood of_zo ﬁnd .
which 1s identically O in a slightly larga: neighborhocod of g, ‘Tﬁis yields
a parametrix S; throughout D which is non-negative on C and approacheglq
a8 2 =93 .
o For any parametrix S whioh vanishes on O, the difference Sz- S 18 twice
continucusly differentiable in D and is non-negative on C. Heree, by (17),
(18), and (19), with £= (A-P)(SI-S) and v-s;- §, we cbtain

LU(A-P)(S]-8)1Es; -8,

or , ,
(28) o= - L [(O-P)SY ) :
Letting z —»3_, wo have s;(u,z)-i’o and (- P(t))S;(t,z)-ibo uniformly in t;
- this last limiting réiation is clear outside any neighborhood of 3, while
inside a small neighborhood of 2z, it follows from (27). Consequently

(29) Iim G(w,s)==0 ,
8"’50

and since G 220, we can make the final desired conclusion

[ RO

B L




(Bb)  lm b(w,ra) =0 R
z-’Ol :

These oaloulations show that O '4s the Grean's funotdon of D for the

1linear elliptic partisl differential :aquation Au=Pu. This construstion

of G gives a remarksbly simple proof of the existence a: ﬁhe Green's fumotioxn,
without previcus knowledge 6: a fundapental solution in the large. In the
special case PEZ0 ve obtain the Oreen's function of Laplace's equation. -
Inoidentally, the.aymtry cf the Green's function is also contained in
the above. Since G(w,2) is the Green's funotion for Qu=Pu as 2 function of
the seocnd variable, with singularity at the first nriable, the funotion
0(z,w) is an admissibile singularitv function S(w,z) in (25). We immediately

obtain, therefore,
(31) Glw,z) = G({z,w) .
0f course, solvability of the Pirichlet problem is obtained once G is

mown.

4. Qeneral domains.

The argument of the preceding seotion oan easily be generalized to the
gase of 8 domain D, btounded or unmbounded, with an arbitrary boundary C. Let
D lie in n-dimensional Buclidean space, where n3>3, and let F(z)3 0 be an
arbitrary non-negative function over D, continuous 7with continuous first
derivatives in D, In 2 dimensions, we suppose either that D is bounded, or
if D is unbounded, that P(z) > 0. Consider the funotien

v, = gllzl) ,
where !z|wr is the distance from z to the origin, and

!
1+rn

glr) =

e M



- 80 that '

. - R - W
Ag(r)‘ ':(14';’-‘)2‘*0 o

The function 13 {8 positivu, is' continuous .az":d has oontinucus first and second
derivatives, and ‘ } ' '

-w, = (A-Ply. <0 c

3 3 ’

so that v, 20. In 2 dimensions, with D unbounded and P >0, eselesc:t»v3

and 13-!’ 20, Define the norm of a funstion £ which 18 continuous in D Ly

=],

(32) e =ee S
_ SAIRE
and let B denote the Banach space of the functions £ with finite norm. Let
B/ denote the subspace of functions £ in B given by
£ = Z}tz; Pu ,
where u is continuous together with first and @econd derivatives in D, and
u~>»0 as the boundary or the point at infinity (4f D is unbounded) is approached.
Finali;r, define the linear funotional L over B as in (186).
Proceeding as in Secticn 3, define the bound b{f] for any £ in 3. &s in
(18), (19), with the condition v ?O on C replaced by lim v=>0 as the

, boundary C or the point at infinity is approached. Inequality (37) applies.

An admissible fumetion in (19) is IlfllvB. For,

(8B ellvy = - el - (v, e
Thus
blel v, (n) ligl]
as in (R0), and we mlso have (21).
Now extend the funotional L,[f] throughout B so that the inequality (17)
is retained, and define the funotion G{w,z) as in Seotlon 3 by (25), where

S(w,z) is a rarametrix which vanishes on C and at infinity. Seetion 3 shows
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that O(v,8), as a funotion of =, sstisifies the squaticn

' Au-Pu=0
and ‘has & fundamental singularity at z=w, s a funotion of the;sacond
variable 2, G ia'therercré a 9u;damen£al solution over D of Qu=Fu,

We aﬁall prove that, among all fundamental solutions, @ i1z characterigad
by the property of being the smallest rositive fundamental solution. This
replages the sondition G=0 on the boundary O beoausé,og the arbitrariness of G,

Firat, G(w,2) 20 throughout D, just as in Seation 3. Sesond, we shall
kshowAthat the important symmetry property ‘

(335 G(w,z) = G(z,w)

is easily contained in our formqlation. Let 8/(w,z) bo a parametrix with

non-negative boundsry values and non-negative values at infinity (L.e., let

1in S'(w,2) =0 as w—>C or the point at infinity, {f D is mbounded), Then,

vy (17) and (18), ' |
8%(w,z) - s(w,z);L'HA- P)(8%(t,z)- 8(t,2))]

or

(34) - 8 (w,z) - L'[(Zﬁ- £)57(t,2)1 20 (w,2)

Now, wo havo already proved that G, as a funotion of its second point, is
a fundamental solution with singularity at the £irst point. Thus, G(z,w)
(note the 1§oatibh of 2 and w) 18 a function of W Which i3 ocontinuous and has
continuous first and second derivatives throughout D, except at the point gz,
Since G(z.4) 2 0, the function G(z,w) is therefore admissible as a choice for
the paramstriz S7(w,z) in (34), and wa obtain

¢(z,w) 20w,z)
This inequality holds for any locations of the points z, ¥, sc that by

interchanging z,w the reverse inequality follows and the symmetry property
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©  The amm property (33) shows that G(v,:) is & well-bshaved function
of d.ta first point w as well, and is a fundamental solution as & function of

- %this firat point w!.th singularity at the second point.

Third, G(w,n) 45 the sxallest positive fundemental solution in D with

- singularity at e "*?or, 1f Plw,r) is suoh a positive fundamental soluticm, it
W_.Voan be med as the parautriz S’(w,s) in (34), with the desired result

Fu,0) Balwn) .
We mention tha following additional propsrty of Giw,s)s If we exolude
a neighborhood ) of the singular point m, the funotion G(w,s) is bounded
for w outside @lgj.iéc;ghbg:bogg, e this were not so,‘,use the function !(So') '

~ constructed in connection with (26), fox surfioie;ﬁly large 7. Define the

funotion f(w,s) as equal to G(w,z) for w in (2, and Qual to F(G(w,z)) for
w outside €. The funotion @(w,2z) is an admissible parametrix in (%) with

o) LUA- Pl 20008)

But (A= P)¢(t 3)< 0 by (26) nd (21) now gives
@(w,2) ?G(v,z)' .

Selecting a point w outside (X where F(w,z) ¥ C(w,2), we contradict the inequality

F(S°)< S, OF Blw,2)< G(w,z),‘ at such a point, Therefo:?e; G(w,2) is bounded
outside ). (Indeed, we have proved that G(w,z), for w outside CL, attains |
its maximum on the boundary of {2.) |

We shall conolude with several éemrks concerning the generality of the
me’ahod.' Pirst, the considerations apply equally well to an arbitrary elliptio
partial differentisl eguation satisfying g maximum'principle. &ll that is

required is thoe construction of a parametrix, and this is done in a3 standard
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manner using a number of terms of a Reunann axpansion analogous to (23). Alsﬁ}
tho constructicn of a partieular Punetion analogous to 73 can be partormed ‘
under roasonable assumptions conoerning the behavior of the soefficients of .

‘the differenblal»equatioa ori' the boundary 6. The fact that the bonndary valuaa

of O ara’ aero, L in Seotien 3, ocan be cbtained by using the infinite Neumqan
serisxs for B Of oourse, if the eguation is not aelr-udjaint, the adjoint
equation will enter into the considerationa

‘Second, the considerations apply to Riemannian manifolds in place of

- domains in Euolidian apace. Integrals of the rirat, second and third kinds,

‘mith or without periods, san be construoted.
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